

Copyright

Alle Rechte vorbehalten. Kein Teil dieses Dokuments darf kopiert, reproduziert, veröffentlicht, hochgeladen, verschickt, übermittelt, verteilt, gespeichert oder eingefügt werden in ein Verteilersystem jeglicher Form, oder durch irgendein Mittel (elektronisch, mechanisch, durch Fotokopien, abspeichern oder andere Weise), ohne vorherige Genehmigung von Rinstrum Europe GmbH.

Haftungsausschluss

Rinstrum Europe GmbH behält sich das Recht vor, das in diesem Handbuch beschriebene Produkt mit dem Ziel zu verändern, das Aussehen, die Leistung oder Zuverlässigkeit zu verbessern.

Alle Informationen dieses Handbuchs sind nach bestem Wissen und Gewissen verfasst. Sie können jederzeit ohne Vorankündigung geändert werden. Rinstrum Europe GmbH schließt jede Haftung für Konsequenzen aus der Benutzung dieses Handbuchs aus.

Inhaltsverzeichnis

_			_
1.	EINFU	IHRUNG	. 2
	1.1.	Das 1400 Profibus Gateway	2
	1.2.	Dieses Referenzhandbuch	2
2.	TECH	NISCHE DATEN	. 3
3.	ANSC	HLÜSSE UND ANZEIGEN	. 4
	3.1.	Profibus Status LEDs.	4
	••••	3.1.1. Profibus Run LED (Grün)	4
		3.1.2. Profibus Dex LED (Rot)	4
	3.2.	Seriell 1 und Seriell 2 Status LEDs	4
4	INSTA		6
	4 1	Hutschienenmontage	6
	4.1. 12	DC Spannungsversorgung	0 6
	4.2. 4.3	Profibus-DP Anschluss	0 6
	ч. <u>э</u> . ДД	Serielle Anschlüsse Serial Port 1 und Serial Port 2	0 6
	7.7.	4 4 1 RS422/485 Abschluss	0
5	KONE		,
5.	5 1	Konfiguration der angeschlessenen Geräte	.0
	5.1.	5.1.1 Mindestversionen der R/20 Software	0 2
	52	Konfiguration dos 1400 Profibus DP Catoway	0
	J.Z.	5.2.1 Konfiguration der Modulo	ອ ດ
		5.2.1. Konngulation der Module	9 0
		5.2.2. Auswall del Module	10
6			11
0.		FORMATE FUR 5000, 5100 UND WEZTTU	11
	0.1.	Eingangsionnal der Wägeelektronik	11
		6.1.2 Feldbeschreibung der Eingengsdeten	11
	62	Augangeformat Refeblesbane 0	12
	0.2.	6.2.1 Struktur Ausgangedatan	12
		6.2.2. Foldbacchroibung Ausgangedaton	12
	62	0.2.2. Feiubeschleibung Ausgangsüdlen	12
	0.3.	6.3.1 Struktur Ausgangedatan	13
		6.3.2 Foldbacchroibung Ausgangsdaten	13
	61	Augrangeformat Befehlsehene 2	15
	0.4.	6 / 1 Struktur Ausgangedatan	15
		6.4.2 Feldbeschreibung Ausgangsdaten	15
7			17
1.		Fingengeformet der Fornenzeige	17
	7.1.	Z 1 1 Struktur Eingengedeten	17
		7.1.1. Struktur Eingengedeten	17
	7 2	Forpanzoido Ausgangsformat	17
	1.2.	7.2.1 Struktur Ausgangedatan	17
		7.2.1. Struktur Ausgaligsualen	17
0			10
ο.		NFORMATE FUR DIE R420 WAGEELERTRONIREN (400ER)	19
	0.1.		19
		0.1.1. Struktur Eingangsdaten	19
	0 0	0.1.2. Felubeschlebung Eingangsbalen	20 22
	0.2.	Ausyaliysiolillat – Dasic Level	22
		8.2.2 Foldboschreibung Ausgangedaten Rasie Level	22 22
	83	0.2.2. Γειωρεουπειρώτης παοχατηγούατει - Daolo Level	22
	0.0.	Rusyanysionnal – Auvaniceu Level	∠∠ ??
		8 3 2 Feldheschreibung Ausgangsdaten – Advanced Level	22
٥			20
э.		1400 prozielle Diegnesen	∠ 4 ⊃4
	9.1.	1400 Spezielle Diagnosell	∠4 24
	9.Z.	vvageelektronik / Anzeige spezifische Diagnosen	∠4

1. Einführung

PROFIBUS

Profibus ist eine Abkürzung des vollen Namens, Process Field Bus.

Profibus ist eine Anbieter-unabhängiger, offener Feldbus Standard, der in einem breiten Feld von Anwendungen in der Produktion und Prozessautomation einsetzbar ist. Diese Architektur ermöglicht es Geräten von unterschiedlichen Herstellern, einfach und ohne spezielle Ausrüstung miteinander zu kommunizieren ledes Profibus Gerät benötigt ein

nander zu kommunizieren. Jedes Profibus Gerät benötigt ein GSD File, das die notwendigen Informationen enthält, dieses Gerät zu beschreiben.

Als ein Industrie-Feldbus, ist der Profibus zum einen fähig, zeitkritische Hochgeschwindigkeitsanwendungen und komplexe Kommunikationen auszuführen.

Auf der Hardwareseite benutzt der Profibus ein 2 Draht RS485 verdrehtes Kabelpaar Netzwerk, das Unempfindlichkeit gegenüber elektrische Störeinflüsse garantiert.

Profibus benutzt eine Master / Slave Anordnung, wobei der Master einen oder mehrere Slaves zur Datenabgabe anspricht. Das Protokoll bietet Möglichkeiten für mehr als einen Master auf dem Bus präsent zu sein. Die Master sind normalerweise entweder eine SPS oder ein PC.

Mehr Informationen über Profibus finden sich im Internet unter www.profibus.org.

1.1. Das 1400 Profibus Gateway

Das 1400 ist ein Profibus-DP Gateway, das die Verbindung von bis zu zwei Wägeelektroniken / Zweitanzeigen über das Protokoll der Elektroniken zum Profibus-DP erlaubt.

Die derzeit unterstützten Wägeelektroniken sind die 5000, 5100, die WE2110 und die R420. Als Fernanzeige wird die 6500 ebenfalls unterstützt.

1.2. Dieses Referenzhandbuch

Dieses Referenzhandbuch deckt alle Aspekte des 1400 Profibus-DP ab, das heißt Installation, Konfiguration, den Betrieb als auch detaillierten Informationen.

Dabei behandelt es nur das 1400 mit minimalen Informationen zu den Wägeelektroniken und Zweitanzeigen, die an den Gateway angeschlossen werden. Für weitere Informationen ziehen sie deren Referenzhandbücher zu Rate.

2. Technische Daten

LEISTUNG	
Profibus-DP	Voll funktionstüchtiges Profibus-DP
Serielle Anschlüsse	Zwei serielle Kommunikationsanschlüsse
Spannungsversorgung	10VDC bis 28VDC, 1.5 W (typischerweise)
Schutzklasse	IP 20
Unterstützte Geräte	Anschluss von bis zu zwei Geräten
Betriebsumgebung	Temperatur –10°C bis +50°C, Luftfeuchtigkeit < 90% nicht kon-
	densierend

SERIELLE AN- SCHLÜSSE	
Anzahl	2
Format	Voll Duplex RS232 und RS485/422 an allen Anschlüssen
Baud Rate	9600, 19200 (Voreinstellung), 38400baud
Unterstützte Geräte	5000, 5100, 6500, WE2110, R420

PROFIBUS-DP An- schluss	
Übertragungsge- schwin-digkeit	9600baud bis 12Mbaud
Unterstützte Services	Synch Mode, Freeze Mode, Auto baud Erkennung, setzt Slave Ad- resse
Isolierung	>1kV optisch isoliertes Profibus-DP Interface

GRÖSSE	
Gehäusegröße	45mm (1.8") B x 115mm (4.5") H x 140mm (5.5") T
Gewicht	230g
Befestigung	Hutschienenmontage (DIN Rail 35mm/1.4")

ZULASSUNGEN	
CE Zeichen	
C-Tick (N2708)	

3. Anschlüsse und Anzeigen

Die Vorder- und Unterseite des 1400 besitzt eine Reihe von Anschlüssen und LED Anzeigen. Die Funktion und die Pinbelegung jedes Anschlusses werden im Kapitel 4.3 und 4.4 beschrieben.

Die LED Anzeigen geben Rückmeldung über den Betriebs- und Kommunikationsstatus des 1400. Die Funktion jeder LED ist im Bild 1 beschrieben.

Bild 1: 1400 Anschlüsse und Statusanzeigen

3.1. Profibus Status LEDs

3.1.1. Profibus Run LED (Grün)

Unter normalen Betriebsbedingungen blinkt diese LED mit variabler Frequenz um die Auslastung der CPU der 1400 anzuzeigen. Die Blinkfrequenz ist etwa 5 pro Sekunde für keine Auslastung und einmal alle 5 Sekunden für 100% Auslastung.

3.1.2. Profibus Dex LED (Rot)

Diese LED leuchtet bei aktivem Datenaustausch der 1400 mit einem Profibus Master.

3.2. Seriell 1 und Seriell 2 Status LEDs

Die **Tx** LED (rot) blinkt, sobald Daten vom 1400 übermittelt werden. Sind ein oder zwei Wägeelektroniken angeschlossen, leuchtet die LED beinahe ständig. Ist keine Elektronik angeschlossen, blinkt die LED gelegentlich, da die 1400 nach neuen Geräten sucht.

Die **Rx** LED (grün) blinkt, sobald Daten von den angeschlossenen Elektroniken empfangen werden. Sind ein oder zwei Elektroniken angeschlossen, leuchtet die LED beinahe ständig.

4. Installation

Die 1400 wurde nur zur Hutschienenmontage entworfen. Es enthält präzise Elektronik und darf nicht Stößen, extremen Vibrationen oder Temperaturen, weder vor noch nach der Installation ausgesetzt werden.

Die Eingänge der 1400 sind gegen elektrische Störungen geschützt, aber extreme hohe elektromagnetische Ausstrahlungen können eine zuverlässige Funktion des 1400 beeinträchtigen. Die 1400 sollte in sicherer Entfernung von Quellen elektrischer Strahlung installiert werden.

4.1. Hutschienenmontage

Für die Hutschienenmontage werden keine speziellen Teile benötigt. Das Gehäuse schnappt einfach in die 35mm Hutschiene ein. Schieben Sie dazu die obere Führung über die Hutschiene und drücken das Gehäuseunterteil nach unten bis die untere Führung einrastet.

4.2. DC Spannungsversorgung

Die DC Versorgung muss nicht geregelt sein, vorausgesetzt dass sie frei von extremen Störungen und plötzlichen Sprüngen ist. Die 1400 kann auch von einem hochwertigen Steckernetzteil gespeist werden, vorausgesetzt es liefert genügend Leistung. Die 1400 erfüllt alle notwendigen EMV Standards und trägt das CE Zeichen.

4.3. **Profibus-DP Anschluss**

Die Verbindung zum Profibus Netzwerk geschieht über einen Standard DB9 Anschluss. Der Anschluss ist vollständig optisch isoliert.

Pin	Signal	Beschreibung
3	RXD/TXD – P	Receive/Transmit Daten P
8	RXD/TXD – N	Receive/Transmit Daten N

4.4. Serielle Anschlüsse Serial Port 1 und Serial Port 2

Beide Anschlüsse sind Standard DB9 Anschlüsse, die einen weiblichen DB9 Stecker benötigen. Die RS232 und RS422/485 sind innerhalb der 1400 parallel geschaltet und beide senden genau die gleichen Daten. Die Anschlüsse für die Ausgänge sind in der nächsten Tabelle erklärt. Beachten Sie, dass das 1400 nur 4 Draht, voll duplex RS422/485 unterstützt.

Pin	Funktion	Beschreibung	Verbunden mit
2	RX1	RS232 Receive Line	Externes Gerät Transmitter
			(Normalerweise pin 3)
3	TX1	RS232 Transmit Line	Externes Gerät Receiver
			(Normalerweise Pin 2)
5	GND1	RS232 Digital Ground	Externes Gerät Digital Ground
			(Normalerweise Pin 5)
6	RA	RS422/485 Receive A (-)	Externes Netzwerk
7	RB	RS422/485 Receive B (+)	Externes Netzwerk
8	ТА	RS422/485 Transmit A (-)	Externes Netzwerk
9	ТВ	RS422/485 Transmit B (+)	Externes Netzwerk

Achtung: Verbinden Sie den Kabelschirm so direkt wie möglich mit dem metallenen DB9 Gehäuse.

Bild 2: RS422/485 serieller Anschluss

Bild 3: RS232 serieller Anschluss

Für weitere Anschlussdetails sehen Sie das Handbuch der verwendeten Wägeelektronik.

4.4.1. RS422/485 Abschluss

Das letzte Gerät in einem mehrkanaligen RS422/485 Netzwerk kann einen Abschlusswiderstand zum Ausgleich der Netzwerkkapazität benötigen. Diese Widerstände sind in das 1400 Profibus-DP Gateway eingebaut.

Sehen Sie auch die Referenzhandbücher der Wägeelektroniken oder Fernanzeigen, wie die Abschlusswiderstände im angeschlossenen Gerät aktiviert werden.

Der Abschlusswiderstand im 1400 kann aktiviert/deaktiviert werden über den Profibus-DP 'Set Parameter' Service.

Achtung: Jede Änderung in den Abschlusswiderständen erfordern einen Systemneustart, damit die neuen Einstellungen aktiviert werden. Dies wird auch über die Profibus Diagnose Message angezeigt.

5. Konfiguration und Einstellungen

Dieser Abschnitt behandelt die Konfiguration des 1400 und der Geräte, die an das Gateway angeschlossen werden.

Das 1400 wurde entwickelt, um bis zu zwei Geräte anzubinden. Die zwei seriellen Anschlüsse wurden unter der Maßgabe entwickelt, die Abtastrate der angeschlossenen Geräte zu erhöhen. Durch die Aufteilung der angeschlossenen Geräte auf zwei serielle Anschlüsse, kann die 1400 die Geräte mit höherer Frequenz abtasten. Dazu müssen den Geräten entweder die Adressen 1 oder 2 vergeben werden und an die entsprechende serielle Schnittstelle angeschlossen werden. Bei Neustart und wenn kein Gerät an der Adresse zu finden ist, wird das 1400 periodisch die Adresse abfragen, um herauszufinden, ob ein neues Gerät angeschlossen wurde.

5.1. Konfiguration der angeschlossenen Geräte

Bevor Sie die Wägeelektroniken oder Fernanzeigen am 1400 anschließen, müssen diese eingestellt werden. Eine kurze Beschreibung der notwendigen Einstellungen finden Sie nachfolgend. Sehen Sie die Referenzhandbücher der Geräte, wie Sie an diese Einstellungen gelangen.

Für eine Wägeelektronik 5000/5100/WE2110, setzen Sie die folgenden Einstellungen:

- Serielle Schnittstelle Type auf NET (Netzwerkbetrieb);
- Netzwerk Adresse auf 1 oder 2 (nur einmalig verwenden);
- Netzwerk Type auf Net A (Ranger Networking);
- Baud Rate auf 19200;
- Serielles Format auf: No parity, 8 data bits, 1 stop bit;
- Abschlusswiderstand (nur RS422/485) auf On.

Für eine Wägeelektronik R420 setzen Sie die folgenden Einstellungen:

- Serielle Schnittstelle Type auf NET (Netzwerkbetrieb);
- Netzwerk Adresse auf 1 oder 2 (nur einmalig verwenden);
- Netzwerk Type auf Protocol B;
- Baud Rate auf 19200;
- Serielles Format auf: No parity, 8 data bits, 1 stop bit;
- Abschlusswiderstand (nur RS422/485) auf On.

Für eine Fernanzeige setzen Sie die folgenden Einstellungen:

- Data Timeout auf noTMO (No Timeout);
- Serielle Schnittstelle auf SLAVE (Netzwerk Slave Operation);
- Datenquelle auf RS422 oder RS232;
- Netzwerkadresse auf 1 oder 2 (nur einmalig verwenden);
- Baud Rate auf 19200;
- Serielles Format auf: No parity, 8 data bits, 1 stop bit;
- Abschlusswiderstand (nur RS422/485) auf On.

5.1.1. Mindestversionen der R420 Software

Die folgende Liste zeigt die Softwareversionen, ab denen das 1400 unterstützt wird:

Software	е Тур	Ab Version
K40 ²	1	2.01
K402	2	2.11

K410	2.01
K411	2.31
K481	1.11
K491	2.01

5.2. Konfiguration des 1400 Profibus-DP Gateway

Das 1400 Profibus Gateway wird über den Profibus Master eingestellt, der dazu das mitgelieferte GSD File benutzt.

Das Gateway ist ein modularer Profibus-DP Slave. Es können maximal 2 Module konfiguriert werden, wobei jedes Modul für eine Wägeelektronik oder eine Zweitanzeige steht.

Unterstützte Module sind die Elektroniken 5000, 5100, WE2110 und R420 und die Zweitanzeige 6500.

5.2.1. Konfiguration der Module

Das GSD File enthält die folgenden Modul Definitionen. Weitere Details des Datenschemas werden für jeden Typ in den nachfolgenden Abschnitten erläutert. Der Profibus Master muss so eingestellt werden, dass er die entsprechende Modulkonfiguration benutzt.

GSD Module Definitionen
Keine Wägeelektronik angeschlossen
WE2110 Wght+Stat+Cmd_Lv0
WE2110 Wght+Stat+Cmd_Lv1
WE2110 Wght+Stat+Cmd_Lv2
5000 Wght+Stat+Cmd_Lv0
5000 Wght+Stat+Cmd_Lv1
5000 Wght+Stat+Cmd_Lv2
5100 Wght+Stat+Cmd_Lv0
5100 Wght+Stat+Cmd_Lv1
5100 Wght+Stat+Cmd_Lv2
6500 Remote Display
R420 Basic Level
R420 Advanced Level

5.2.2. Auswahl der Module

Module einer Profibuskonfiguration sind über ihre Adresse und der seriellen Schnittstelle der Wägeelektronik oder Fernanzeige zugeordnet.

- Module 1 der Profibuskonfiguration bezieht sich auf das Gerät, das auf Adresse 1 konfiguriert und am seriellen Anschluss 1 an der 1400 angeschlossen ist.
- Module 2 der Profibuskonfiguration bezieht sich auf das Gerät, das auf Adresse 2 konfiguriert und am seriellen Anschluss 2 an der 1400 angeschlossen ist.
- Unbenutzte Module müssen mit "No Indicator Connected" (Keine Wägeelektronik angeschlossen) konfiguriert werden.

5.2.3. Konfigurations-Beispiele

Wie in Abbildung 4 gezeigt, wird eine 5000 Elektronik an Schnittstelle 1 angeschlossen und mit Cmd_Lv2 konfiguriert.

- Setzen Sie die Adresse der Elektronik auf 1
- Den Profibus-DP Master muss folgendermaßen eingestellt werden:
 - Module 1: 5000 Wght+Stat+Cmd_Lv2
 - o Module 2: No Indicator Connected

Abbildung 4: Anschluss eines Gerätes

Wie in Abbildung 5 gezeigt, wird eine 5000 Elektronik an Schnittstelle 1 mit Konfiguration Cmd_Lv3 angeschlossen und eine R420 an Schnittstelle 2 mit "advanced configuration" (Experteneinstellung),

- Adressen der Wägeelektroniken:
 - o 5000: auf Adresse 1 setzen
 - o R420: auf Adresse 2 setzen
- Der Profibus-DP Master muss folgendermaßen eingestellt werden:
 - Module 1: 5000 Wght+Stat+Cmd_Lv2
 - Module 2: R420 Advanced Level

Abbildung 5: Anschluss zweier Geräte

6. Datenformate für 5000, 5100 und WE2110

Dieser Abschnitt beschreibt das Datenformat des Datenein- und Datenausgangs für jede der angeschlossenen Wägeelektroniken. Eingangsinformationen werden von der angeschlossenen Wägeelektronik an den Profibus-DP Master übertragen und enthalten Gewichtswerte, Wägestatus, Eingang/Ausgangsdaten und Fehlermeldungen.

Ausgangsdaten werden vom Profibus-DP an die angeschlossene Wägeelektronik übertragen und enthalten Befehlsinformationen wie z.B. Tasteninformationen von der Vorderseite der Wägeelektronik, Kalibrierfunktionen und Einstellungen für Rezepte. Zwei Datenformate mit drei verschiedenen Befehlsebenen stehen zur Verfügung.

Jede Konfiguration hat drei Möglichkeiten, die Befehls- oder Ausgangsebene zu konfigurieren:

- Befehlsebene 0 Cmd_Lv0 erlaubt den Fernzugang der Fronttasten über das Profibus-DP und die dazugehörigen Funktionen wie Nullsetzen (ZERO), Tarieren (TARE), Umschalten zwischen Brutto / Netto (GROSS/NET), Drucken (PRINT) und die ferngesteuerten Tasten der Wägeelektronik.
- Befehlsebene 1 **Cmd_Lv1** beinhaltet zusätzlich die Möglichkeit der Kalibrierung des Nullpunktes und der Spanne über den Profibus-DP.
- Befehlsebene 2 **Cmd_Lv2** beinhaltet zusätzlich den Zugang zu den Experteneinstellungen der Rezepturen.

Befehle werden nur ausgeführt, wenn das Befehlsbyte modifiziert wurde. Änderungen in den Befehlsdaten haben keine Auswirkung bis ein neues Befehlsbyte in das 1400 geschrieben wird. Die beste Vorgehensweise ist das Befehlsbyte zu löschen, die Befehlsdaten zu modifizieren und dann den Befehl einzutragen, der ausgeführt werden soll.

6.1. Eingangsformat der Wägeelektronik

Die Eingangsinformation von der angeschlossenen Wägeelektronik an den Profibus-DP Master wird im folgenden Format bereitgestellt:

6.1.1. Struktur Eingangsdaten

Format		
Bytes 1-10	Beschreibung	
1	Nummer des seriellen Anschlusses	
2	Adresse Wägeelektronik	
3	Gewicht Status 1	
4	Gewicht Status 2	
5	Eingangs Status	
6	Ausgangs Status	
7	Gewichtswert (MSB 32 bit signed integer)	
8	Gewichtswert	
9	Gewichtswert	
10	Gewichtswert (LSB 32 bit signed integer)	

6.1.2. Feldbeschreibung der Eingangsdaten

Nummer des seriellen Anschlusses

Byte 1	Serieller Anschluss
Bit 1-0	01 = Serial 1

10 = Serial 2

Wägeelektronik Adresse

Byte 2	Adresse der Elektronik	
Bit 4-0	1 oder 2	

Gewicht Status Byte 1

Byte 3	Gewicht Status Byte 1
Bit 7	Nulllage
Bit 6	Bereich 2
Bit 5	Brutto
Bit 4	Bewegung
Bit 3	Nulllage
Bit 2	Unterlast
Bit 1	Überlast
Bit 0	Fehler

Gewicht Status Byte 2

Byte 4	Gewicht Status Byte 2	
Bit 0	Kalibrierung wird durchgeführt	

Eingang Status

Elligang otatas		
Byte 5	Eingang Status (der Erweiterungskarte)	
Bit 4	Eingang 5	
Bit 3	Eingang 4	
Bit 2	Eingang 3	
Bit 1	Eingang 2	
Bit 0	Eingang 1	

Ausgang Status

Byte 6	Ausgang Status	
Bit 3	Ausgang 4	
Bit 2	Ausgang 3	
Bit 1	Ausgang 2	
Bit 0	Ausgang 1	

Gewichtswert lesen

Bytes 7-10	Beschreibung
7	Gewichtswert lesen (MSB 32 bit signed integer)
8	Gewichtswert lesen
9	Gewichtswert lesen
10	Gewichtswert lesen (LSB 32 bit signed integer)

6.2. Ausgangsformat Befehlsebene 0

Für die Befehlsebene 0 ist das folgende Format als Ausgangsinformation vom Profibus-DP Maser zur angeschlossen Wägeelektronik notwendig.

6.2.1. Struktur Ausgangsdaten

Bytes 1-3	Beschreibung
1	Nummer des seriellen Anschlusses
2	Adresse der Wägeelektronik
3	Befehl

6.2.2. Feldbeschreibung Ausgangsdaten

Nummer des seriellen Anschlusses					
Byte 1	Numm	Nummer des seriellen Anschlusses			
Bit 1-0	01 = Serial 1				
	10 = Serial 2				
Adresse der	Wägeel	ektronik			
Byte 2	Adress	se der Wägeelektr	onik		
Bit 4-0	1 or 2	_			
Befehl					
Byte 3	Befehlsebene 0				
Bit 3-0	Funktio	on (wird von Bit 6-4	gewählt)		
	Fn.	Normal	Remote Short	Remote Long	
			Press	Press	
	0001	Zero	Button 1	Button 1	
	0010	Tare	Button 2	Button 2	
	0011	Gross/Net	Button 3	Button 3	
	0100	Print	Button 4	Button 4	
	0101	Save Settings	Button 5 (5100)	Button 5 (5100)	
	0110	Reset Indicator	<not available=""></not>	<not available=""></not>	
Bit 6-4	Function	on Select			
000 = Normal Function (Bits 3-0)			on (Bits 3-0)		
	00	1 = Remote Buttor	n Short Press (Bits 3-0))	
	01	0 = Remote Buttor	n Long Press (Bits 3-0))	
	xxx = All other settings not available to Command Leve			ommand Level 0	
Bit 7	1 = Reset 1400 (Bits 6-0 must be 0)				

6.3. Ausgangsformat Befehlsebene 1

In der Befehlsebene 1 wird die Ausgangsinformation vom Profibus-DP Master zur angeschlossenen Wägeelektronik im folgenden Format benötigt:

6.3.1. Struktur Ausgangsdaten

Bytes 1-11	Beschreibung
1	Nummer serieller Anschluss (wie Befehl Level 0, siehe 6.2.2)
2	Adresse Wägeelektronik (wie Befehl Level 0, siehe 6.2.2)
3	Befehl
4-11	Befehlsdaten

6.3.2. Feldbeschreibung Ausgangsdaten

Befehle (Zusätzlich zur Ebene 0)

Byte 3	Befehlsebene 1
Bit 3-0	Funktion (wie mit bits 6-4 ausgewählt)

	Fn.	Kalibrierung	
	0001	Kalibrierung Nullpunkt	
	0010	Kalibrierung Spanne	
	0011	Kalibrierung Nullpunkt in mV/V	
	0100	Kalibrierung Spanne in mV/V	
	0101	Setze Linearisierungspunkt	
	0110	Lösche Linearisierungspunkt	
	0111	Setze Nennlast	
Bit 6-4	Wählt Funktion		
	011 = Kalibrierfunktionen (Bits 3-0)		

Kalibrierung Nullpunkt

Bytes 4-11	Befehlsdaten (Level 1)	Range
4-11	Kannst Du vergessen!	

Kalibrierung Spanne

Bytes 4-11	Befehlsdaten (Level 1)	Range
4-11	Kannst Du vergessen!	

Kalibrierung Nullpunkt in mV/V

Bytes 4-7	Befehlsdaten (Level 1)	Range
4	Totlastsignal in mV/V (MSB 32 bit signed integer)	-20000 to
5	Totlastsignal in mV/V	+20000
6	Totlastsignal in mV/V	Note: 20000 =
7	Totlastsignal in mV/V (LSB 32 bit signed integer)	2.0mV/V

Kalibrierung Spanne in mV/V

Bytes 4-7	Befehlsdaten (Level 1)	Range
4	Signal Spanne in mV/V (MSB 32 bit signed integer)	0 to 30000
5	Signal Spanne in mV/V	Note: 30000 =
6	Signal Spanne in mV/V	3.0mV/V
7	Signal Spanne in mV/V (LSB 32 bit signed integer)	

Setze Linearisierungspunkte

Bytes 4-8	Befehlsdaten (Level 1)	Range
4	Linearisierungspunkt	1 bis 5
5	Testgewicht Wert (MSB 32 bit signed integer)	0 to 999999
6	Testgewicht Wert	
7	Testgewicht Wert	
8	Testgewicht Wert (LSB 32 bit signed integer)	

Linearisierungspunkt löschen

Byte	Befehlsdaten (Ebene 1)	Range
4	Linearisierungspunkt	1 bis 5

Setze Kalibriergewicht (Gewicht bei Spanne)

Bytes 4-7	Befehlsdaten (Ebene 1)	Range
4	Kalibriergewicht (MSB 32 bit signed integer)	2% bis 100%
5	Kalibriergewicht	der Nennlast
6	Kalibriergewicht	
7	Kalibriergewicht (LSB 32 bit signed integer)	

6.4. Ausgangsformat Befehlsebene 2

In der Befehlsebene 2 wird die Ausgangsinformation vom Profibus-DP Master zur angeschlossenen Wägeelektronik im folgenden Format benötigt:

6.4.1. Struktur Ausgangsdaten

Bytes 1-20	Beschreibung
1	Nummer serieller Anschluss (wie Befehlsebene 0 – siehe 6.2.2)
2	Adresse der Wägeelektronik (wie Befehlsebene 0 – siehe 6.2.2)
3	Befehl
4-20	Befehlsdaten

6.4.2. Feldbeschreibung Ausgangsdaten

Befehle (zusätzlich zur Ebene 0 und Ebene 1)

Byte 3	Befehl	Befehlsebene 2		
Bit 3-0	Funktio	Funktion (wie gewählt durch bits 6-4)		
	Fn. Schaltpunkt Funktion			
	0001	Setze aktuelles Rezept (nur bei 5100)		
	0010 Setze Zielgewicht (nur bei 5100)			
	0011	Schaltpunkt Einstellungen		
Bit 6-4	Wählt	ahlt Funktion 100 = Rezeptfunktionen (Bits 3-0)		

Wählt aktuelles Rezept

Bytes 4-6	Befehlsdaten (Level 2)	Range	
4	Rezeptnummer	1 bis 99	
5	Verhältnis (MSB 16 bit unsigned integer)	1 bis 10000	
6	Verhältnis (LSB 16 bit unsigned integer)	(0.1% to 1000%)	

Wählt Zielgewicht

Bytes 4-9	Befehlsdaten (Ebene 2)	Range	
4	Rezeptnummer	1 bis 99	
5	Materialnummer	1 bis 20	
6	Zielgewicht (MSB 32 bit signed integer)	0 bis Nennlast	
7	Zielgewicht		
8	Zielgewicht		
9	Zielgewicht (LSB 32 bit signed integer)		

Setzen der Schaltpunkte

Bytes 4-16	Befehlsdaten (Ebene 1)	Range
4	Schaltpunktnummer	1 bis 25 (5100) 1 bis 4 (WE2110, 5000)
5	Zielgewicht (MSB 32 bit signed integer)	-999999 to +999999
6	Zielgewicht	(vernachlässigbar für
7	Zielgewicht	5100)
8	Zielgewicht (LSB 32 bit signed integer)	
9	Gewicht vor Nachlauf (MSB 32 bit signed integer)	0 to 999999
10	Gewicht vor Nachlauf	
11	Gewicht vor Nachlauf	
12	Gewicht vor Nachlauf (LSB 32 bit signed integer)	
13	Hysterese (MSB 32 bit signed integer)	0 to 999999

14	Hysterese	
15	Hysterese	
16	Hysterese (LSB 32 bit signed integer)	

7. Datenformat für die 6500 Fernanzeige

Dieser Abschnitt beschreibt das Eingangs- und Ausgangsdatenformat für jede angeschlossene alphanumerische Fernanzeige. Die Eingangsinformation wird von der angeschlossenen alphanumerischen Fernanzeige zum Profibus-DP Master übermittelt und enthält das aktive Anzeigefeld.

Die Ausgangsinformationen sind Daten, die vom Profibus-DP an die angeschlossene alphanumerische Anzeige gesendet werden und enthalten Gewichtswerte und Status oder Textinformationen (die als solche dargestellt werden).

7.1. Eingangsformat der Fernanzeige

Die Eingangsinformationen von der angeschlossenen Anzeige werden im folgenden Format an den Profibus-DP Master abgeliefert:

7.1.1. Struktur Eingangsdaten

Format	
Bytes 1-3	Beschreibung
1	Nummer des seriellen Anschlusses (wie bei Befehlsebene 0 - se-
	hen Sie dazu 6.2.2)
2	Adresse der Anzeige (Wie bei Befehlseben 0 – sehen Sie dazu
	6.2.2)
3	Aktive Feldnummer

7.1.2. Feldbeschreibung Eingangsdaten

Aktive Feldnummer

Byte 3	Aktive Feldnummer	
Bit 2-0	Feld 0 bis 4	

7.2. Fernanzeige Ausgangsformat

Für angeschlossene Fernanzeigen werden die Ausgangsinformationen vom Profibus-DP Master im folgenden Format benötigt:

7.2.1. Struktur Ausgangsdaten

Bytes 1-13	Beschreibung
1	Nummer serielle Schnittstelle (Befehl Level 0, siehe 6.2.2)
2	Adresse Anzeige (Befehl Level 0, siehe 6.2.2)
3	Befehl
4	Anzeige Feldnummer
5-10	Alphanumerische Zeichen oder Zahlen
11	Dezimalpunkt
12	Status
13	Hilfsanzeigen

7.2.2. Feldbeschreibung Eingangsdaten

Befehl Byte 3

Byte 3	Befehl
Bit 7-0	00101001 = Schreibt Daten in den Feld Zwischenspeicher

00101010 = Wählt aktives Feld

Beachten Sie: Um Auszeiten der Anzeige zu vermeiden, wählen Sie das Feld, das Sie anzeigen möchten und schreiben dann die Daten in das entsprechende Anzeigen Feld Zwischenspeicher.

Setzt das aktive Anzeigefeld

Bytes 4-13	Setzt aktives Anzeigefeld
4	Feld, das aktiv gesetzt werden soll (0 bis 4)
5-13	Vernachlässigbar

Sendet alphanumerischen String

Bytes 4-13	Sendet alphanumerischen String
4	Zu setzendes Feld (0 bis 4)
5-10	Anzuzeigende alphanumerische ASCII Zeichenkette
	(Byte 5 ist das Zeichen ganz links)
11-13	Kannst Du vergessen

Sende numerische Daten

Bytes 5-13	Befehlsdaten (Ebene 1)	Range
5	Zahlenwert (MSB 32 bit signed integer)	-999999 bis
6	Zahlenwert	+999999
7	Zahlenwert	
8	Zahlenwert (LSB 32 bit signed integer)	
9-10	Kannst Du vergessen	
11	Position Dezimalpunkt (von rechts)	0 bis 5
12	Status	
13	Hilfsanzeigen	

Beachten Sie: Das 1400 erkennt automatisch numerische oder Textdaten und verarbeitet diese entsprechend.

Status

Byte 12	Status
Bit 2	1 = Error
Bit 1	1 = zu wenig (under)
Bit 0	1 = zu viel (over)

Hilfsanzeigen

Byte 13	Hilfsanzeigen
Bit 2	1 = Nullage
Bit 1	1 = Brutto
Bit 0	1 = Bewegung

8. Datenformate für die R420 Wägeelektroniken (400er)

Dieser Abschnitt beschreibt das Datenformat für die Eingangs- und Ausgangsdaten für jede angeschlossene 400er. Eingangsinformationen werden von der angeschlossenen 400er an den Profibus-DP Master übertragen und enthalten sowohl Statusinformationen als auch ausgelesene Daten von einem der Register der 400er, die mit Daten in Zahlenformat antworten (1-4 bytes). Die Register können Gewichtswerte, Gewichtsstatus und Eingang/Ausgangsdaten enthalten.

In der Voreinstellung sind die Register:

Slot Number	Vorgewählte	Beschreibung
	Register Adresse	
1	0051 _н	I/O status
2	0025 _н	Brutto/Nettogewicht
3	0026 _н	Bruttogewicht
4	0220 _H	Addiertes Gewicht
5	B000 _Н	Aktive Produktnummer
6	В102 _н	Produkt Gesamtgewicht

Die zu verwendenden Register können durch Ausgabebefehle geändert werden. Diese Änderungen werden dauerhaft im 1400 abgespeichert.

Die Ausgangsdaten sind die vom Profibus-DP an die angeschlossene Wägeelektronik übertragenen Daten und enthalten Befehlsinformationen wie z.B. die Informationen über die Fronttasten, die Wahl des numerischen Registers zusammen mit der Angabe in diese zu schreiben oder auszuführen.

Es sind zwei Datenformate mit verschiedenen Befehlsebenen verfügbar.

Jede Konfiguration hat zwei Befehlsebenen (Ausgang) als Einstellmöglichkeit:

- Befehlsebene **Basic** erlaubt Fernzugriff auf die Fronttasten über den Profibus-DP. Es ermöglicht zusätzlich das Auslesen von 2 auswählbaren Registern der 400er als Eingangsdaten.
- Befehlsebene **Advanced** fügt weitere 4 Register Slots der 400er hinzu, die als Eingangsdaten ausgelesen werden können. Zusätzlich Register der 400er können beschrieben und über den Profibus-DP ausgeführt werden.

Die Befehle werden nur ausgeführt, wenn das Befehlsbyte modifiziert wurde. Änderungen in den Befehlsdaten haben erst Auswirkungen, wenn das Befehlsbyte in die 1400 geschrieben wird. Am einfachsten und sichersten ist es, das Befehlsbyte zu löschen, die Befehlsdaten zu ändern und dabei den Befehl zu setzen, der ausgeführt werden soll.

8.1. Eingangsformat der Wägeelektronik

Die Eingangsinformation von der angeschlossenen 400er wird im folgenden Format an den Profibus-DP Master geliefert:

8.1.1. Struktur Eingangsdaten

Bytes 1-12	Beschreibung
1	Nummer der seriellen Schnittstelle
2	Adresse der Wägeelektronik
3	Status MSB

4	Status LSB
5	Konfigurierbares Register Slot 1 (MSB 32 bit signed integer)
6	Konfigurierbares Register Slot 1
7	Konfigurierbares Register Slot 1
8	Konfigurierbares Register Slot 1 (LSB 32 bit signed integer)
9	Konfigurierbares Register Slot 2 (MSB 32 bit signed integer)
10	Konfigurierbares Register Slot 2
11	Konfigurierbares Register Slot 2
12	Konfigurierbares Register Slot 2 (LSB 32 bit signed integer)

Format – Advanced Level

Bytes 1-28	Beschreibung
1	Nummer der seriellen Schnittstelle
2	Adresse der Wägeelektronik
3	Status MSB
4	Status LSB
5	Konfigurierbares Register Slot 1 (MSB 32 bit signed integer)
6	Konfigurierbares Register Slot 1
7	Konfigurierbares Register Slot 1
8	Konfigurierbares Register Slot 1 (LSB 32 bit signed integer)
9	Konfigurierbares Register Slot 2 (MSB 32 bit signed integer)
10	Konfigurierbares Register Slot 2
11	Konfigurierbares Register Slot 2
12	Konfigurierbares Register Slot 2 (LSB 32 bit signed integer)
13	Konfigurierbares Register Slot 3 (MSB 32 bit signed integer)
14	Konfigurierbares Register Slot 3
15	Konfigurierbares Register Slot 3
16	Konfigurierbares Register Slot 3 (LSB 32 bit signed integer)
17	Konfigurierbares Register Slot 4 (MSB 32 bit signed integer)
18	Konfigurierbares Register Slot 4
19	Konfigurierbares Register Slot 4
20	Konfigurierbares Register Slot 4 (LSB 32 bit signed integer)
21	Konfigurierbares Register Slot 5 (MSB 32 bit signed integer)
22	Konfigurierbares Register Slot 5
23	Konfigurierbares Register Slot 5
24	Konfigurierbares Register Slot 5 (LSB 32 bit signed integer)
25	Konfigurierbares Register Slot 6 (MSB 32 bit signed integer)
26	Konfigurierbares Register Slot 6
27	Konfigurierbares Register Slot 6
28	Konfigurierbares Register Slot 6 (LSB 32 bit signed integer)

8.1.2. Feldbeschreibung Eingangsdaten

Nummer der seriellen Schnittstelle

Byte 1	Nummer der seriellen Schnittstelle
Bit 1-0	01 = Serial 1
	10 = Serial 2
Adresse der Wägeelektronik	

Auresse der Wageerektronik	
Byte 2	Adresse der Wägeelektronik
Bit 4-0	1 oder 2
2.1 . 0	

Status Byte 1	
Byte 3	Wiegestatus Byte 1
Bit 7	Kalibrierung wird gerade durchgeführt
Bit 6	Nullbereich
Bit 5	Brutto
Bit 4	Unruhe
Bit 3	Nulllage
Bit 2	Unterlast
Bit 1	Überlast
Bit 0	Fehler

Status Byte 2

Byte 4	Wiegestatus Byte 2
Bit 7-0	Reserviert

Konfigurierbares Register Slot 1

Bytes 5-8	Konfigurierbares Register Slot 1
5	Konfigurierbares Register Slot 1 (MSB 32 bit signed integer)
6	Konfigurierbares Register Slot 1
7	Konfigurierbares Register Slot 1
8	Konfigurierbares Register Slot 1 (LSB 32 bit signed integer)

Konfigurierbares Register Slot 2

Bytes 9-12	Konfigurierbares Register Slot 2
9	Konfigurierbares Register Slot 2 (MSB 32 bit signed integer)
10	Konfigurierbares Register Slot 2
11	Konfigurierbares Register Slot 2
12	Konfigurierbares Register Slot 2 (LSB 32 bit signed integer)

Konfigurierbares Register Slot 3 (nur im Expertenlevel)

Bytes 13-16	Konfigurierbares Register Slot 3
13	Konfigurierbares Register Slot 3 (MSB 32 bit signed integer)
14	Konfigurierbares Register Slot 3
15	Konfigurierbares Register Slot 3
16	Konfigurierbares Register Slot 3 (LSB 32 bit signed integer)

Konfigurierbares Register Slot 4 (Advanced Level only)

Bytes 17-20	Konfigurierbares Register Slot 4
17	Konfigurierbares Register Slot 4 (MSB 32 bit signed integer)
18	Konfigurierbares Register Slot 4
19	Konfigurierbares Register Slot 4
20	Konfigurierbares Register Slot 4 (LSB 32 bit signed integer)

Konfigurierbares Register Slot 5 (Advanced Level only)

Bytes 21-24	Konfigurierbares Register Slot 5
21	Konfigurierbares Register Slot 5 (MSB 32 bit signed integer)
22	Konfigurierbares Register Slot 5
23	Konfigurierbares Register Slot 5
24	Konfigurierbares Register Slot 5 (LSB 32 bit signed integer)

Konfigurierbares Register Slot 6 (Advanced Level only)Bytes 25-28Konfigurierbares Register Slot 6

	Koningarierbares Register olor o	
25	Konfigurierbares Register Slot 6 (MSB 32 bit signed integer)	
26	Konfigurierbares Register Slot 6	

27	Konfigurierbares Register Slot 6
28	Konfigurierbares Register Slot 6 (LSB 32 bit signed integer)

8.2. Ausgangsformat – Basic Level

Im Basic Level wird folgendes Ausgangsformat vom Profibus-DP Master an die angeschlossenen 400er benötigt:

8.2.1. Struktur Format Ausgangsdaten – Basic Level

Format - Basic Level

Bytes 1-5	Beschreibung
1	Nummer serielle Schnittstelle
2	Adresse Wägeelektronik
3	Befehl
4 -5	Befehlsdaten

8.2.2. Feldbeschreibung Ausgangsdaten – Basic Level

Nummer serielle Schnittstelle

Byte 1	Nummer serielle Schnittstelle
Bit 1-0	01 = Serial 1
	10 = Serial 2

Adresse Wägeelektronik

Adresse Mageeleka enik		
Byte 2	Adresse Wägeelektronik	
Bit 4-0	1 or 2	

Befehl

Byte 3	Befehl – Basic Level
1	Send Key
2	Set Konfigurierbares Register Slot 1
3	Set Konfigurierbares Register Slot 2

Befehlsdaten – Sende Key Befehl

Byte 4	Befehlsdaten	Range
4	Key Code	Siehe Referenz-
		handbuch 400er

Befehlsdaten – Setze Konfigurierbares Register Slot 1 oder 2

Bytes 4-5	Befehlsdaten		Range
4	RegID (MSB 16 bit unsign	ed integer)	Siehe Referenz-
5	RegID (LSB 16 bit unsigne	ed integer)	handbuch 400er

8.3. Ausgangsformat – Advanced Level

Im Advanced Level werden die Ausgangsinformationen vom Profibus-DP Master an die angeschlossenen 400er im folgenden Format benötigt:

8.3.1. Struktur Ausgangsdaten – Advanced Level

Format – Advanced Level

Bytes 1-9	Beschreibung		
1	Nummer des seriellen Anschlusses (wie beim Basic Level – sehen		
	Sie dazu Abschnitt 8.2.2)		

2	Adresse des 400er (wie beim Basic Level - sehen Sie dazu Ab-
	schnitt 8.2.2)
3	Befehl
4 -9	Befehlsdaten

8.3.2. Feldbeschreibung Ausgangsdaten – Advanced Level

Befehl (zusätzlich zum Basic Level)

Byte 3	Befehl – Advanced Level
4	Setzt Konfigurierbares Register Slot 3
5	Setzt Konfigurierbares Register Slot 4
6	Setzt Konfigurierbares Register Slot 5
7	Setzt Konfigurierbares Register Slot 6
8	Setzt Passcode
9	Schreibe Register
10	Führe Register aus

Befehlsdaten – Setzt Konfigurierbares Register Slot 3, 4, 5 oder 6

Bytes 4-5	Befehlsdaten	Range
4	RegID (MSB 16 bit unsigned integer)	Sehen Sie
5	RegID (LSB 16 bit unsigned integer)	R420 Hand-
		buch

Befehlsdaten – Setzt Passcode

Bytes 4-7	Befehlsdaten	Range
4	Passcode (MSB 32 bit unsigned integer)	Sehen Sie
5	Passcode	R420 Hand-
6	Passcode	buch
7	Passcode (LSB 32 bit unsigned integer)	

Befehlsdaten – Schreibe Register

Bytes 4-9	Befehlsdaten	Range
4	RegID (MSB 16 bit unsigned integer)	Sehen Sie
5	RegID (LSB 16 bit unsigned integer)	R420 Hand-
		buch
6	Data (MSB 32 bit signed integer)	Seben Sie
7	Data	R420 Hand-
8	Data	buch
9	Data (LSB 32 bit signed integer)	buon

Befehlsdaten – Register ausführen

Bytes 4-9	Befehlsdaten	Range
4	RegID (MSB 16 bit unsigned integer)	Sehen Sie
5	RegID (LSB 16 bit unsigned integer)	R420 Hand-
		buch
6	Optional Data (MSB 32 bit signed integer)	Sehen Sie
7	Optional Data	R420 Hand-
8	Optional Data	buch
9	Optional Data (LSB 32 bit signed integer)	buon

9. DIAGNOSE Daten

Diagnoseinformationen beinhalten Fehler- und Warnmeldungen, die als Textmeldungen über die Profibus-DP Diagnose Services angezeigt werden können. Die Meldungen sind im mitgelieferten GSD File vordefiniert und werden im folgenden Kapitel beschrieben.

Die Struktur der Diagnosedaten wird nachfolgend beschrieben:

Bytes 1-12	Beschreibung
1-4	1400 spezielle Diagnosen
5-8	Modul 1 (erste Wägeelektronik) Diagnose
9-12	Modul 2 (zweite Wägeelektronik) Diagnose

9.1. 1400 spezielle Diagnosen

Byte 1	Diagnose der 1400
Bit 5	EEPROM Speicherfehler
Bit 4	Systemneustart notwendig (nach Änderung der Parameter Baudra- te und/oder Abschluss der seriellen Schnittstelle)
Bit 3	Spannungsversorgung zu hoch (>28VDC)
Bit 2	Spannungsversorgung zu niedrig (<10VDC)

Byte 3	Reserviert
Byte 4	Modul Diagnose Flags
Bit 7	Eine oder mehrere Module (Wägeelektronik/Anzeige) haben Diag-
	nose Flag gesetzt

9.2. Wägeelektronik / Anzeige spezifische Diagnosen

Byte 5 Byte 9	Wägeelektronik Adresse und Nummer des seriellen Anschlus- ses
Bit 7-2	000001 = Wägeelektronik 1
Bit 1-0	01 = Serial 1
· · · · · · · · · · · · · · · · · · ·	10 = Serial 2

Byte 6 Byte 10	Wägeelektronik Status Byte 1	Was ist zu tun?
Bit 7	- Fühlerleitung nicht angeschlos-	Prüfe Anschluss Fühlerlei-
	sen	tung
Bit 6	+ Fühlerleitung nicht angeschlos-	Prüfe Anschluss Fühlerlei-
	sen	tung
Bit 5	Fehler Waageneinstellungen	Prüfe Kalibrierung
Bit 4	Fehler zu hohe Temperatur	Prüfe Aufstellort / Ventilation
Bit 3	Sensor Spannungsversorgung zu hoch	Prüfe Waagenanschluss
Bit 2	Sensor Spannungsversorgung zu niedrig	Prüfe Waagenanschluss

Referenzhandbuch 1400 - Software Version 3.xx

Bit 1 Bit 0	Spannungsversorgung zu hoch Spannungsversorgung zu niedrig	Prüfe Spannungsversorgung Prüfe Spannungsversorgung
Byte 7 Byte 11	Wägeelektronik Status Byte 2	Was ist zu tun?
Bit 7	Fehler Programmspeicher	Service
Bit 6	Runtime Informationen verloren	Service
Bit 5	Fehler Zeit/Datum	Service
Bit 4	ADC außerhalb der Grenzen	Prüfe Anschlüsse Wägezelle
Bit 3	Fehler Nichtflüchtiger Speicher	Service
Bit 2	Herstellerdaten verloren	Service
Bit 1	Kalibrierdaten verloren	Neu kalibrieren
Bit 0	Digital Setup verloren	Einstellungen neu eingeben
Byte 8	Wägeelektronik Status Byte 3	Was ist zu tun?
Byte 12		
Bit 3	Typ der Wägeelektronik nicht er-	Dull to OOD Elected line a surel
	Typ der Wageelektronik ment er-	Prute GSD Einstellung und
	kannt	Adressierung des Netzwer-
	kannt	Adressierung des Netzwer- kes
Bit 2	kannt Wägeelektronik nicht angeschlos-	Adressierung des Netzwer- kes Prüfe Netzwerkverbindungen
Bit 2	Wägeelektronik nicht angeschlos- sen	Adressierung des Netzwer- kes Prüfe Netzwerkverbindungen
Bit 2 Bit 1	kannt Wägeelektronik nicht angeschlos- sen Fehler Befehl	Adressierung des Netzwer- kes Prüfe Netzwerkverbindungen Prüfe auf korrekte Befehls-
Bit 2 Bit 1	Wägeelektronik nicht angeschlos- sen Fehler Befehl	Adressierung des Netzwer- kes Prüfe Netzwerkverbindungen Prüfe auf korrekte Befehls- ebene, korrekten Befehl